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Abstract

This study is concerned with the finite, large strain deformation behavior of polymeric glasses. True stress–strain curves in uniaxial

compression obtained for five different polymeric glasses: polycarbonate, polystyrene, poly(2,6-dimethyl-1,4-phenylene oxide), and linear and

cross-linked poly(methylmethacrylate), revealed a strain-hardening response during plastic deformation that is strain-rate dependent and deviates

from neo-Hookean behavior. An empirical modification of the so-called compressible Leonov model by a strain dependent activation volume is

suggested, which describes the strain-rate dependent large strain behavior of these glassy polymers in good agreement with experimental data.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

An important aspect of the mechanical behavior of polymers

is the strain-hardening response during large-strain plastic

deformation. It is now generally accepted that the long-chain

nature of polymers in general, and polymer glasses especially,

plays an important role in their mechanical response at large

deformations. During plastic deformation, the covalent chains

orient, resulting in anisotropic materials with enhanced

properties in the drawing direction. The exact nature of this

orientation process, however, has not yet been resolved, which

hampers the development of efficient constitutive relations and,

ultimately, the design of new polymeric materials with tailored

mechanical properties.

A typical stress–strain curve in uniaxial compression of an

amorphous polymer deformed at five different strain rates (far)

below its glass transition is shown in Fig. 1. The temperature

and strain-rate dependent yield stress of glassy polymers is

adequately described by the Eyring model [1], in which the

so-called activation volume determines the decrease of

activation energy for segmental motion in the direction of the

applied stress. At large strains in the post-yield regime,

amorphous polymers typically reveal a drop in the true stress

with increasing plastic strain, usually referred to as intrinsic

strain-softening. The exact physical origin of strain-softening
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has not been elucidated yet, but appears to be related to the

process of physical aging [2,3]. Physical aging, the slow

approach towards thermodynamic equilibrium, tends to

increase the yield stress as a function of aging time. This

increase is reversed by plastic deformation, which is the above-

mentioned strain-softening response, also called ‘mechanical

rejuvenation’ [4,5]. After strain-softening, the stress increases

again with increasing plastic strain. The latter characteristic

feature of stress–strain curves of polymeric glasses, which is

the main focus of this study, is called strain-hardening and is

usually described by a rubber-elastic response of an underlying

entanglement network with strain-hardening modulus GR (note

that we use this nomenclature for the strain hardening modulus

as suggested by van Melick et al. [6]).

Haward and Thackray [7] were the first to incorporate

concepts of rubber-elasticity into the constitutive modeling of

polymer glasses to account for strain-hardening. They assumed

that the total stress can be decoupled into a viscoelastic part,

evolving from segmental motions, and a rubber-elastic part

with a given finite extensibility, evolving from the rubber-

elastic response of an entanglement network active in the

polymeric solid during plastic deformation. This one-dimen-

sional model was extended by Boyce et al. [8] into a three-

dimensional finite strain formulation, the so-called ‘BPA-

model’. Later, it was shown by Haward [9,10] that stabilization

of deformation zones during plastic deformation could also be

realized with simple neo-Hookean strain-hardening behavior.

Neo-Hookean strain hardening behavior was also observed

experimentally in uniaxial tension for a number of linear glassy

and semi-crystalline polymers [10,11]. In a recent study [6]
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Fig. 1. Typical stress–strain curves of a polymeric glass obtained in uniaxial

compression at different strain rates _3.

M. Wendlandt et al. / Polymer 46 (2005) 11786–11797 11787
neo-Hookean strain-hardening was found for a series of

poly(styrene)-poly(phenyleneoxide) blends and even for

cross-linked poly(styrene). In all cases, the strain-hardening

increased with increasing entanglement or cross-link density.

In other studies, neo-Hookean strain-hardening was found to

play an important role in the stabilization of localized

deformation zones [12–14]. The object of this paper is to

investigate in more detail the contribution of the entanglement

network and segmental motion to the total strain-hardening

response of a number of linear and cross-linked polymer

glasses. Especially, the effect of a non-constant activation

volume on the total stress–strain behavior will be discussed.
2. Theory

2.1. The compressible Leonov model

The theoretical analysis of the deformation behavior of

polymer glasses in this study is based on a modification of the

compressible Leonov model [4,15]. First, a brief description of

a standard single Leonov mode will be presented, while the

extension to a non-constant activation volume will be

discussed in more detail in Section 5. The standard three-

dimensional Leonov model provides a constitutive description

of the finite strain, non-linear viscoelastic behavior of

polymeric glasses. In this model, the total Cauchy stress T is

decomposed in a driving stress S due to segmental motion and a

deviatoric hardening stress R related to an elastic network

response:

T Z S CR (1)

The deviatoric hardening stress R is described by a simple

neo-Hookean relation [7,11]:

R Z GR
~B

d
(2)

where ~B is the isochoric left Cauchy–Green deformation

tensor, GR is the strain-hardening modulus, and the superscript

‘d’ denotes the deviatoric part of a tensor.
The driving stress S consists of a hydrostatic part that is

coupled to the relative volume deformation JZdV/dV0, and a

deviatoric part, that is determined by the isochoric elastic strain
~Be and can be written as:

S Z KðJK1ÞI CG ~B
d
e (3)

where K is the bulk modulus and G the shear modulus.

Assuming that the volume deformation remains elastic, the

evolution equation for J follows from kinematics: _JZJ trðDÞI,

where D is the strain-rate tensor and the dot denotes the time

derivative. The evolution equation for ~Be describes the

accumulation of elastic strain (at constant volume) that is

reduced because of a plastic strain rate Dp:

~B8e Z ðDdKDpÞ$ ~Be C ~Be$ðDdKDpÞ (4)

where ~B8e is the Jaumann or corotational derivative of ~Be.

Eyring’s molecular rate theory [16–18] forms the basis for the

modeling of the plastic strain rate in the present research. It is

assumed, that a structural element on an atomistic or molecular

scale, e.g. a chain, a side chain, or statistical Kuhn segment in

polymers, takes part in an event leading to plastic deformation

of a polymer glass by passage over an energy barrier, a so-

called ‘plastic event’. The jump probability is increased when

external work, e.g. stress, aids the passage over the barrier. The

Eyring theory leads to a generalized non-Newtonian flow rule

that can be used to relate the plastic strain rate to the deviatoric

driving stress using a stress-dependent Eyring viscosity h:

Dp Z
Sd

2hðteqÞ
with hðteqÞ Z At0

teq=t0

sinhðteq=t0Þ
(5)

teq Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
trðSd$SdÞ

r
(6)

_geq Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðDp$DpÞ

q
(7)

Here, the equivalent stress teq is proportional to the von

Mises stress, _geq is the equivalent plastic strain-rate that

reduces to the plastic shear rate for shear flow, and t0 describes

a characteristic stress:

t0 Z
kT

V�
(8)

where V* is the so-called ‘activation volume’, which is

assigned to a ‘plastic event’ as described above and treated

as a material constant in the Eyring theory. Finally, A is a

characteristic time given by

A Z A0 exp
DH0

kT

� �
(9)

where k is the Boltzmann constant, A0 constant pre-exponential

factor involving the fundamental vibration energy, T the

absolute temperature, and DH0 represents the height of the

energy barrier at zero equivalent stress. Hence, according to

Eqs. (5)–(7), in the Eyring model the equivalent strain rate _geq
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is related to the equivalent stress teq as:

_geq Z
1

A
sinh

teq

t0

� �
(10)

From these equations it follows that the driving stress

response Sd, as described in this model, can be depicted as a

single Maxwell mode employing a non-linear relaxation time

lZh(teq)/G. In principle, the viscosity in Eq. (5) can also be

augmented to include the effects of hydrostatic pressure and

intrinsic strain-softening [4], which, however, is not the subject

of this research.

In the case of large stress and strain in a uniaxial

compression test, the strain rate dependence of stress can be

calculated for the basic Leonov model as follows: the

hyperbolic sine term accounts for the back-jumps of the flow

unit, which are not negligible at low stresses. When the

argument of the hyperbolic sine function is large, i.e. when teq

is high and back jumps are negligible, it can be approximated

by an exponential function so that sinh(x)z1/2 exp(x). Using

Eq. (9), Eq. (10) can be rewritten for this limiting case as

_geq Z
1

2A0

exp K
DH

kT

� �
with DH Z DH0KV�teq (11)

where DH is the height of the energy barrier at applied stress

teq. Using the relations _geqZ
ffiffiffi
3

p
_3, and teqZ

ffiffiffiffiffiffiffi
1=3

p
s valid for

uniaxial deformation, cf. Eqs. (6) and (7), the activation

volume V* can be related to the strain dependence of stress via

V� Z kT
ffiffiffi
3

p ds

dln _3

� �K1

valid for uniaxial deformation (12)

where s is the total true stress in deformation direction and _3 is

the total strain rate, assuming that after yielding the plastic

strain rate approximately equals the total strain rate. Hence, Eq.

(12) provides us with a tool for the direct determination of the

theoretical activation volume V* from experimental data

obtained in uniaxial deformation.
Table 1

Materials

Material Notation MW

Polystyrene PS96K 96,000

PS483K 483,000

PS1M 1,000,000

PS4M 3,900,000

Poly(methylmethacrylate) PMMA55K 55,600

PMMA100K 100,000

PMMA254K 254,100

PMMA772K 772,000

PMMA1M 1,520,000

PMMAc 120,000

Poly(phenyleneoxide) PPO 50,000

Polycarbonate PC64K 64,000

MW is the weight averaged molecular weight, MN the number averaged molecular w

entanglement density in units of entanglements per volume [19].
3. Experimental

3.1. Materials

The materials used in this study can be divided into two

sections. First, an assortment of linear amorphous polymers,

which at room temperature are far below their glass transition

temperatures (at least 80 K), and, which cover a wide range of

entanglement densities, cf. Table 1. Second, chemically cross-

linked poly(methylmethacrylate) (PMMA) with varying cross-

link density. Linear polymers were obtained from Polymer

Laboratories, UK, except polystyrene (PS), commercial grade

PMMA (PMMAc), polycarbonate (PC) (Aldrich, CH) and

poly(2,6-dimethyl-1,4-phenylene oxide) (commercial grade

PPO) (PolySciences, USA).

Cross-linking of PMMA (commercial grade, PMMAc) was

achieved by 1,10-diaminodecane, where the amidation-

reaction was catalyzed by p-toluenesulfonic acid [20].

Weighted quantities of polymer, diamine, and catalyst were

dissolved in methylene-chloride. Amounts of diamine were

chosen such that the final cross-link density were varied from

values of the order of the entanglement density re of the

corresponding melt to values of about 10re. The catalyst

amounted to 2–3% equiv of the amine. After stirring for 5 min,

the solution was poured into a petri-dish and the solvent was

allowed to evaporate at room temperature over a period of

4 days. To maintain the cross-link reaction effectively, an

optimal temperature of 150 8C had been determined empiri-

cally. Hence, cross-linked PMMA samples were prepared by

keeping the compression temperature of 150 8C in the mold

over a period of 4 days before cooling down.

The cross-link density was determined by measuring the

elastic modulus in uniaxial compression of samples swollen in

N,N-dimethylformamide, where the volume fraction of the

polymer v2 in the swollen samples was determined by

measuring their buoyant force in hexane. Application of the

well-known phantom model [21,22], which satisfactorily

describes the rubber-elastic response of the swollen network,

yields directly the effective average cycle rank x per volume

from the experimental elastic modulus G:
MW/MN Tg (K) re (1/nm3)

1.03 363 0.0219

1.05

1.03

1.05

1.02 388 0.0340

1.04

1.04

1.03

1.08

3.00

2.50 483 0.1046

1.66 418 0.2581

eight, MW/MN the polydispersity, Tg the glass transition temperature, and re the



M. Wendlandt et al. / Polymer 46 (2005) 11786–11797 11789
s Z Gða2KaK1Þ with G Z
xkT

Vd

v1=3
2 (13)

Here s is the true compressive stress, a the isochoric draw

ratio, x the number of network chains that must be cut to reduce

the network to a state containing no closed cycles, Vd the

sample volume in the dry state, and kT the thermal energy.

Finally, from the knowledge of the cycle rank x, the effective

average number of cross-links per unit volume m can be appro-

ximated in the limit of many chains [23] by mZx(f/2K1)K1,

where f is the effective functionality of the network, which is

assumed to be fZ4.
3.2. Sample preparation

Cylindrical samples (diameter 4mm, height 3mm) were

prepared by compression molding at temperatures 30K–50K

above the glass transition temperature of the material at a very

slow compression rate (!0.5 mm/min). This allowed the

material to flow into the hot mold and approach an equilibrium

state within a time window of 30 min. In this way, flow induced

orientation of the polymer chains were minimized. Sub-

sequently, to minimize temperature gradients in the sample,

the temperature was decreased slowly to room temperature (!
0.6 K/min), at a pressure of less than 20 MPa. Degradation was

avoided by a careful choice of the compression temperature

and sealing of the mold. In a final step, flat parallel top and

bottom surfaces were obtained by polishing.
Fig. 2. Correlation coefficient R2 of a linear fit to sð3ÞKln _3 plots as a function

of true strain according to the data of Figs. 3 and 4. Down triangles: PC64K, up

triangles: PS483K, squares: PPOc, circles: PMMA772K. To visualize the post-

yield regime, the approximate strain interval, which covers the onset of yield of

all four polymers, is indicated by the hatched area.
3.3. Methods

All uniaxial compression experiments were performed at

constant true strain rate on a mechanical tensile and

compression tester Z020 from Zwick GmbH & Co KG,

Germany. The sample dimension along the compression

direction was derived from the cross-head displacement of

the tensile tester and corrected instantly for the finite

compliance of the whole test setup before data acquisition.

The lateral sample dimension of the cylindrical symmetric

samples was measured using a video extensometer from

Messphysik Materials Testing, Austria.

Friction between the steel plates of the compression setup

and the sample surfaces was minimized by placing a thin sheet

of Teflon (0.02 mm thickness) in combination with commercial

fluid dishwasher (a 6/1 blend of anionic tensides and soap)

between the surface of the sample and the compression plates.

In this way bulging were avoided up to the maximum applied

strains (of about 3ZK0.9).

All experiments were performed at compressive strain rates

j_3j%10K2 sK1 using a sample geometry with a high surface-to-

volume ratio of 1.6 to optimize heat transfer with the

surrounding. Temperature effects on true stress–strain curves

due to internal heat generation have been reported in literature

[24,25], but occurring at strain rates j_3jR3!10K2 sK1 for

samples with lower surface to volume ratios (in the range

0.5–1).
4. Results

The focus of this study is on finite large-strain deformation

behavior of polymer glasses, with the emphasis on the

influence of strain-rate. Note that the terms stress and strain

(rate) always refer to true stress and true strain (rate) unless

indicated otherwise. Isothermal stress–strain plots have been

obtained in uniaxial compression at room temperature from the

polymeric glasses listed in Table 1. Each listed material was

tested at 4–5 different constant strain rates, to be called a ‘set’.

In total a number of 35 sets have been obtained experimentally,

thus resulting in a reliable number of statistical significant

experiments. According to Eq. (12), the yield stress sy, usually

defined as the local stress maximum, which is considered to

mark the onset of plastic flow, is a linear function of

logarithmic strain-rate:

dsy

dln _3
Z

ffiffiffi
3

p
kT

V�
sf ð_3Þ at 3 Z 3yield (14)

A good approach to analyze strain-rate effects on stress at

large finite deformations might be to verify the linearity of the

sKln _3 relation not only at the yield point, but as a function of

strain covering the complete post-yield regime from medium to

finite strains. This leads to the more general equation

dsð3Þ

dln _3
Z Gð3Þsf ð_3Þ at 3R3yield (15)

where G(3) denotes an initially strain-rate independent

unknown function of the actual state of deformation presented

by the total strain 3. For all sets of compression tests, the stress

at a certain fixed strain 3Zconst. was plotted against the

logarithmic strain-rate, and the quadratic correlation coefficient

R2 [26] of a linear fit to the data was determined to evaluate the

linearity of the sð3ÞKln _3 relation as a function of total strain 3,

cf. Eq. (15). Fig. 2 shows values of the quadratic correlation

coefficient R2. In this figure it can be seen, that the quality

of the linear fit improves with increasing strain, featuring
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a quadratic correlation coefficient not falling below 0.85, with

exception of the curves for PC, which depict an inferior fit in

the strain softening regime around 3zK0.3. This is due to the

fact, that, in general, the strain-rate dependence of stress–strain

plots of PC is relatively small, hence the dependence on strain-

rate being much more sensitive to experimental errors.

Nevertheless, Fig. 2 indicates, that the stress appears to be a

linear function of the logarithmic strain-rate to a good

approximation, not only at the yield point, but at any state of

deformation in the post yield regime. Note that no model

assumption on the strain dependence of G(3) is included in Eq.

(15) or can be extracted from Fig. 2.

Figs. 3 and 4 shows representative stress–strain curves of

PMMA, PPO, PC, and PS recorded at five different strain-rates

in the range j_3jZ10K4 sK1 to j_3jZ10K2 sK1. Additionally, the

dotted line in every subfigure shows the linear dependence of

stress on the logarithmic strain-rate as a function of strain, i.e.

the dotted line in each subfigure presents G(3) according to Eq.

(15). Obviously there is a clear increase of G(3) with increasing

strain in the post-yield regime succeeding the local stress

minimum, i.e. succeeding strain-softening. This qualitative

effect had been generally observed in uniaxial compression

tests for all glassy polymers in this study, independently of

degree of cross-linking, molecular weight or polydispersity.
Fig. 3. Solid lines: experimental isothermal stress–strain data obtained at room

temperature: (a) PMMA772K, (b) PPO. All curves were obtained in uniaxial

compression at constant true strain-rates j_3j increasing from bottom to top

(10K4 sK1, 3!10K4 sK1, 10K3 sK1, 3!10K3 sK1, and 10K2 sK1). Dotted

lines: derivative of true stress with respect to logarithmic strain-rate

dsð3Þ=dln _3ZGð3Þ.

Fig. 4. Solid lines: experimental isothermal stress–strain data obtained at room

temperature: (a) PC64K, (a) PS483K. All curves were obtained in uniaxial

compression at constant true strain-rates j_3j increasing from bottom to top

(10K4 sK1, 3!10K4 sK1, 10K3 sK1, 3!10K3 sK1, and 10K2 sK1 (not for

PS483K)). Dotted lines: derivative of true stress with respect to logarithmic

strain-rate dsð3Þ=dln _3ZGð3Þ.
Fig. 5 shows the effect of varying cross-link density on

engineering stress–strain curves of chemically cross-linked

PMMA. For a better visualization of any possible effects, Fig. 5

is presented in engineering units to reduce additional data

scattering induced by a further experimental parameter present
Fig. 5. Engineering uniaxial stress against lKlK2 for PMMA with varying

cross-link densities increasing from bottom to top: non-cross-linked linear

PMMA, mZ0.105, mZ0.314, mZ0.627, mZ0.785, where m denotes the

absolute average number of effective cross-links per unit volume in units of

(1/nm3).



Fig. 7. Simulated true stress–true strain curves in compression according to the

Leonov model using (a) constant activation volume V*Zconstant and (b) non-

constant activation volume V�ð3Þf
ffiffiffiffiffiffiffiffiffiffi
IBIIB

p
. Parameters for the simulation were

chosen from a best fit to experimental compression data of PMMA (cf. Fig. 9).

Thin solid lines: viscoelastic response, dashed lines: rubber-elastic response,

thick solid lines: total stress response.

Fig. 6. True uniaxial stress against l2KlK1 for PMMA, PS, PC and PPO

recorded at a true strain-rate of j_3jZ10K3 sK1 with varying (weight averaged)

molecular weights MW for the case of PMMA and PS, according to the

materials listed in Table 1. Results for all molecular weights are shown.
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in true stress–strain curves, which is the actual area of the

sample. Since all samples had the same dimensions and were

compressed under identical conditions, engineering units

present no constraints with respect to the comparison of the

curves. Engineering stress is plotted against lKlK2 to

visualize any significant deviation from neo-Hookean beha-

vior. From Fig. 5 it can be seen, that increasing cross-link

density induces an increasing stress response revealing an

increasing deviation from neo-Hookean behavior at large finite

deformations. The increasing stress response is normally

attributed to an increase of the modulus of the rubber-elastic

network response [6], resulting in an increase of stress with

increasing network density at large strains, whereas deviation

from neo-Hookean behavior is normally attributed to the finite

extensibility of the chains [8,27].

However, careful inspection of Fig. 6 appears to indicate

that also for the linear non-cross-linked materials a deviation

from neo-Hookean behavior can be observed. Note that neo-

Hookean behavior manifests itself as a linear dependence of the

true stress as a function of l2K1/l.

In addition, Fig. 6 shows that for the case of glassy PMMA

and PS, the influence of molecular weight on stress–strain

behavior at room temperature is negligible within the scatter of

the experiments for the applied range of 300MeOMWO5Me,

where Me is the so-called entanglement molecular weight of

the corresponding polymer melt.
5. Discussion

In the basic compressible Leonov model, the activation

volume V*, as introduced in Eq. (8), is considered to be an

intrinsic material constant. Assuming an elastic neo-Hookean

strain-hardening response, such a constant activation volume

would always lead to a vertical shift with changing strain-rate

of post-yield stress curves as shown in subplots (a) of Figs. 7

and 8. A good test of the validity of this proposition is to plot

V*, obtained from experimental data via Eq. (12), as a function

of strain. Interestingly G(3) and therefore also V*, which is
inverse proportional to G(3) in uniaxial compression mode like

V�ð3ÞZGð3ÞK1kT
ffiffiffi
3

p
(cf. Eqs. (12) and (15)), are a function of

strain rather than an intrinsic material constant as shown in

Figs. 3 and 4 by the dotted lines and already suggested by Pink

[18].

The approach presented in the following is a purely

empirical relation aimed to get the best agreement between

modeling and experimental stress–strain data. In the simplest

attempt at visualization, the activation volume V* might be

described as the product of a displacement vector and the area

‘swept out’ by a plastic event [18]. From kinematics [28] it is

known that the extension of a line element in a point P and the

change in area of all planes in a point P averaged over all

possible orientations are given by the first and second

invariants (IB, IIB) of the isochoric Cauchy–Green strain tensor
~B, respectively:

dl

l

� �
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1 Cl2
3 Cl2

3

3

s
Z

ffiffiffiffiffi
IB

3

r
(16)

dA

A

� �
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1l2
2 Cl2

2l2
3 Cl2

1l2
3

3

s
Z

ffiffiffiffiffiffiffi
IIB

3

r
(17)

Therefore, it is attempted to relate the strain-dependent

activation volume V*(3) to the actual state of deformation in



Fig. 8. Simulated true stress–true strain curves in tension according to the

Leonov model using (a) constant activation volume V*Zconstant and (b) non-

constant activation volume V�ð3Þf
ffiffiffiffiffiffiffiffiffiffi
IBIIB

p
. Parameters for the simulation were

chosen from a best fit to experimental compression data of PMMA (cf. Fig. 9).

Thin solid lines: viscoelastic response, dashed lines: rubber-elastic response,

thick solid lines: total stress response.

Fig. 9. (a) True stress–true strain plot of PMMA772K obtained in uniaxial

compression at different true strain rates j_3j increasing from bottom to top

(10K4 sK1, 3!10K4 sK1, 10K3 sK1, 3!10K3 sK1, and 10K2 sK1). (b)

Experimental activation volume determined via Eq. (12) from the plots in

(a) as a function of
ffiffiffiffiffiffiffiffiffiffi
IBIIB

p
=3, as suggested in Eq. (18). Solid lines show the

best fit of continuum model simulations with a non-constant activation

volume to the experimental data in the non-hatched region of the graph.
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the following way:

V�f

ffiffiffiffiffiffiffiffiffiffi
IBIIB

p

3
(18)

This relation implies, that, at any given fixed strain,

sð3Þf ln _3, i.e. that Eq. (15) holds as supported by Fig. 2.

Changing the actual state of deformation, i.e. varying the total

strain, however, will now change the activation volume

according to Eq. (18). Hence, the actual activation volume

V*(3) is altered by the total strain through a dependence of the

activation volume on invariants of the isochoric Cauchy–Green

strain tensor ~B. For a uniaxial deformation test, assuming

incompressibility, the isochoric Cauchy–Green strain tensor ~B
equals

~B Z

eK3 0 0

0 eK3 0

0 0 e23

0
BB@

1
CCA (19)

Using Eq. (19) in Eq. (18) yields

V�ð3Þ Z aV KbV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2eK3 Ce23ÞðeK23 C2e3Þ

p
(20)

where aV and bV are fitting parameters denoting the intercept

and slope of the linear relation suggested in Eq. (18).
To demonstrate the effect of this non-constant activation

volume on the large strain behavior of the suggested

continuum model, subplots (b) of Figs. 7 and 8 show

simulated data according to the modified Leonov model

using a non-constant activation volume. Here, the parameters

for the simulation in compression and tension where chosen to

yield a best fit to the experimental large strain compression

data of PMMA as shown in Fig. 9. From these plots it can be

seen that the introduction of a non-constant activation volume

into the viscoelastic response of the compressible Leonov

model in combination with an elastic neo-Hookean strain-

hardening response generates a strain-rate dependent strain-

hardening and upswing of stress at large strains, respectively.

In other words, total stress–strain curves obtained at different

strain-rates are not parallel at large strains as the in the case of

a constant activation volume according to Eqs. (14) and (15)

and deviate from neo-Hookean behavior. Note that simulated

data in compression and tension were generated with identical

parameters whilst the stress upswing at large strains is much

less pronounced in tension.
5.1. Linear glassy polymers

Figs. 9(a)–12(a) show representative plots of PMMA, PPO,



Fig. 11. (a) True stress–true strain plot of PC64K obtained in uniaxial

compression at different true strain rates j_3j increasing from bottom to top

(10K4 sK1, 3!10K4 sK1, 10K3 sK1, 3!10K3 sK1, and 10K2 sK1).

(b) Experimental activation volume determined via Eq. (12) from the plots in

(a) as a function of
ffiffiffiffiffiffiffiffiffiffi
IBIIB

p
=3, as suggested in Eq. (18). Solid lines show the best

fit of continuum model simulations with a non-constant activation volume to

the experimental data in the non-hatched region of the graph.

Fig. 10. (a) True stress–true strain plot of PPOc obtained in uniaxial

compression at different true strain rates j_3j increasing from bottom to top

(10K4 sK1, 3!10K4 sK1, 10K3 sK1, 3!10K3 sK1, and 10K2 sK1).

(b) Experimental activation volume determined via Eq. (12) from the plots in

(a) as a function of
ffiffiffiffiffiffiffiffiffiffi
IBIIB

p
=3, as suggested in Eq. (18). Solid lines show the best

fit of continuum model simulations with a non-constant activation volume to

the experimental data in the non-hatched region of the graph.
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PC, and PS together with least squares fits (thin solid lines) of

the suggested modified Leonov model including a non-constant

activation volume according to Eq. (18). Fitting parameters

were G, A, aV, bV, and GR, cf. Tables 2 and 3.

Figs. 9(b)–12(b) show the experimental activation volume

determined from stress–strain plots via Eq. (12) together with

the activation volume V*(3) (solid lines) according to the

suggested model. Note that the solid lines do not show a fit of

Eq. (20) to the experimental activation volume. Instead, V*(3)

was calculated with fitting parameters aV and bV, cf. Eq. (20)

and Table 2, which were obtained from a least squares fit of the

model to stress–strain data as shown in Figs. 9(a)–12(a).

The aim of this study is to investigate plastic deformation of

glassy polymers at large finite strains. As shown by numerous

authors [4,11,29,30], strain softening has no influence on the

large strain behavior of polymer glasses. Hence, fitting of the

experimental stress–strain curves with the modified Leonov

model was always chosen to start after the local strain softening

minimum and the hatched areas of the graphs were not taken into

account, except for the initial elastic modulus of the calculated

curves, which was determined from the experimental stress–

strain curves at small strain. In this way, fitting the experimental

large strain data results in a constitutive model for the fully

rejuvenated material. To obtain a correct description of the

initial yield stress and subsequent yield drop, the rejuvenated
stress–strain response would need to be corrected for the

increase in yield stress due to physical aging and the subsequent

strain-softening upon plastic deformation [4].

The most obvious feature of these plots is, that the

experimental activation volume is not independent of the

actual state of deformation, but rather decreases with

increasing strain thus, leading to an increasing strain-hardening

response with increasing strain-rate. Obviously a good fit of

theoretical stress–strain curves to experimental data, cf. Figs.

9(a)–12(a), does not imply that also the experimental activation

volume is described by the model to the same level of accuracy.

This is due to the fact that V*(3) is inverse proportional to

ds=dln _3. Thus, especially in the case of a weak dependence of

stress on strain-rate, even small relative deviations between

theory and experiment in stress–strain plots, cf. Figs. 9(a)–

12(a), can cause larger discrepancies in the theoretical

description of the strain dependence of the activation volume,

cf. Figs. 9(b)–12(b). Hence, considering both, the stress–strain

plots and the strain dependence of the activation volume

improves the reliability of the validation of any suggested

model. However, in this study it appears that a quantitative

description of the experimental strain dependence of stress and

activation volume at large deformations can be achieved

satisfactorily by the incorporation of a non-constant activation



Fig. 12. (a) True stress–true strain plot of PS483K obtained in uniaxial

compression at different true strain rates j_3j increasing from bottom to top

(10K4 sK1, 3!10K4 sK1, 10K3 sK1, 3!10K3 sK1, and 10K2 sK1).

(b) Experimental activation volume determined via Eq. (12) from the plots in

(a) as a function of
ffiffiffiffiffiffiffiffiffiffi
IBIIB

p
=3, as suggested in Eq. (18). Solid lines show the best

fit of continuum model simulations with a non-constant activation volume to

the experimental data in the non-hatched region of the graph.

Table 3

Strain–hardening modulus GR determined by the average slope ds/d(l2KlK1)

in the strain interval K1.5!(l2KlK1)!K2.0 of Fig. 6, and by a best fit of the

modified compressible Leonov model as shown in Figs. 9–12

Material GRZds/d(l2KlK1)

(MPa)

GR by modified comp.

Leonov model (MPa)

PMMA 53 23

PPO 55 41

PC 47 31

PS 9 0.7

M. Wendlandt et al. / Polymer 46 (2005) 11786–1179711794
volume V*(3) in the compressible Leonov model as suggested

by Eq. (18).

Again, it should be stressed that in all measurements

presented in this paper, a good description of the strain-

hardening response using a non-constant activation volume

was only obtained by including a neo-Hookean elastic

component. Attempts to fit the stress–strain curves solely

with a viscous contribution employing a non-constant

activation volume were not successful. The physical meaning

of a strain-dependent activation volume is not a priori clear.

Although the applied fitting relation Eq. (20) is purely

phenomenological, its ability to describe the post yield

stress–strain behavior so well could indicate that segmental

motion is affected not only by stress, but also by orientation of
Table 2

Fit parameters obtained from a least squares fit of the modified compressible

Leonov model to experimental stress–strain data as shown in subplots (a) of

Figs. 9–12

Material G (MPa) A/1010 (s) aV (nm3) bV (nm3)

PMMA 700 0.0040 1.47 0.40

PPO 446 0.0119 2.72 0.69

PC 490 1.0365 5.75 1.97

PS 750 1523 3.13 0.36
the macromolecular chains as presented by the strain

dependence of the activation volume.

As noted before, due to application of a non-constant

activation volume V*(3), the contribution of the elastic (neo-

Hookean) network response to the total strain-hardening is

reduced. Therefore, the lower strain-hardening modulus

translates into entanglement densities that are lower than in

the case of a constant activation volume. Table 3 shows

strain-hardening moduli determined from the slopes of Fig. 6

and determined by a best fit of the modified compressible

Leonov model to the experimental data in Figs. 9–12. Here,

it can be seen, that the contribution of the rubber-elastic

network to the strain hardening decreases significantly by the

application of a non-constant activation volume. Note, that

the value of GR should not be taken too literally, since it

depends on the suggested relation of the activation volume

V* on strain, cf. Eq. (18). The validity of the concept of a

network active during plastic deformation in glassy polymers

as a generator for strain-hardening and especially segmental

orientation is supported by solid-state NMR studies on

segmental orientational order in deformed poly(bisphenol A

carbonate) [31] and poly(methylmethacrylate) [32,33]. This

network is of considerably higher density than the

entanglement network.
5.2. Cross-linked PMMA

Best fits of the stress–strain behavior of cross-linked PMMA

using the modified Leonov model are shown in Figs. 13 and 14.

Interestingly, the function G(3), describing the experimental

activation volume as a function of strain, was found to

dependent on crosslink density, as depicted in Fig. 15,

suggesting the following extension of Eq. (18):

V�ð3Þfm
ffiffiffiffiffiffiffiffiffiffi
IBIIB

p
(21)

where m is the total average number of cross-links per unit

volume. Apparently, a non-constant activation volume is able

to describe the increased strain-rate dependent upswing

observed for cross-linked glassy PMMA. At the same time

the neo-Hookean response is kept more or less con-

stant(z23G7 MPa), despite cross-link densities that differ

by a factor of seven. Note that there is no need to introduce

finite extensibility of network chains to account for the stress

upswing at large strains. In this approach, surprisingly, the

increased strain-hardening upon cross-linking is due to



Fig. 13. True stress–true strain plots of cross-linked PMMA with varying cross-

link densities m, (a) 0.785/nm3, (b) 0.627/nm3, obtained in uniaxial

compression at different true strain rates j_3j increasing from bottom to top

curve (10K4 sK1, 3!10K4 sK1, 10K3 sK1, 3!10K3 sK1, and 10K2 sK1). Thin

solid lines show the best fit of continuum model simulations with a non-

constant activation volume to the experimental data in the non-hatched region

of the graph.

Fig. 14. True stress–true strain plots of cross-linked PMMA with varying cross-

link densities m, (a) 0.314/nm3, and (b) 0.105/nm3, obtained in uniaxial

compression at different true strain rates j_3j increasing from bottom to top curve

(10K4 sK1, 3!10K4 sK1, 10K3 sK1, 3!10K3 sK1, and 10K2 sK1). Thin solid

lines show the best fit of continuum model simulations with a non-constant

activation volume to the experimental data in the non-hatched region of the

graph.

Fig. 15. Change of the activation volume with increasing cross-link density for

chemically cross-linked PMMA according to the suggested dependencies of

Eq. (18) on invariants of the Cauchy–Green strain tensor. The dotted lines

indicate the corresponding value for the non-cross-linked material. The solid

line presents a linear fit to the data suggesting a linear dependence of the

activation volume on the cross-link density as described in Eq. (21).

M. Wendlandt et al. / Polymer 46 (2005) 11786–11797 11795
the modification of the activation volume rather than an

increased elastic neo-Hookean contribution. The independence

of the strain hardening modulus on cross-link density, as

suggested in this study, may be counter-intuitive since cross-

linking clearly increases the rubber-elastic modulus above Tg.

However, there is a large discrepancy between the strain-

hardening modulus measured at room temperature and the

rubber-elastic modulus above Tg, as was also noticed by others

[6,11]. As a result, entanglement densities calculated from the

high strain-hardening moduli measured at room temperature

tend to be extremely high, much higher than common values

for entanglement and cross-link densities observed above Tg. It

is, therefore, not clear whether there should be a direct

correlation between the rubber-elastic response of an entangled

or cross-linked network above Tg and a neo-Hookean strain-

hardening response below Tg, except possibly at very high

entanglement or network densities, such as in the case of

poly(carbonate) [34]. However, the chemical cross-link

density, as shown in this study, as well as the entanglement

density of linear glassy polymers, as shown recently by Ho

et al. [35], seem to affect the viscous part of the total stress

significantly, which can be accounted for by using a strain and

crosslink-dependent activation volume. The importance of

thermal mobility of polymer chains on strain-hardening was

also recognized by van Melick et al. [6].
In other words, the network density of linear and cross-

linked PMMA calculated from the strain-hardening modulus at

room temperature is much higher than the entanglement or

chemical cross-link densities applied in this study, which could

explain the relative insensitivity of the strain-hardening
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modulus to cross-link density. Note that the mentioned

insensitivity is a consequence of the suggested model using a

strain dependent activation volume. Moreover, this insensitiv-

ity has also been supported by NMR experiments [33], which

show that the average orientational distribution of polymer

chain segments in plastically deformed glassy PMMA is

independent of cross-link density. This suggests that the same

rubber-elastic network response as found in this study is also

the generator for segmental orientation in the glassy state,

insensitive to the applied cross-link densities.
6. Conclusions

In this paper, the compressible Leonov model augmented

with an elastic neo-Hookean network response is modified

by a non-constant activation volume to describe the strain-

rate dependence of the strain-hardening and the stress-

upswing at large compressive strains of polymer glasses, in

good agreement with experimental data. However, vali-

dation of the suggested model for loading geometries

different from uniaxial compression has not yet been

explored.

The activation volume could be described as an empirical

function of invariants of the left Cauchy–Green strain tensor or

the equivalent stress tensor of the network. According to this

approach, the rate-dependent upswing of stress, observed in

linear and cross-linked glassy systems in this study, is not

related to the finite extensibility of network chains, but rather to

a change in the viscoelastic response.

For the chemically cross-linked materials, within the range

of cross-link densities applied in this study, the neo-Hookean

part of the strain-hardening response was found to be

independent of chemical cross-link density. It was found that

the increase in the total strain-hardening response upon cross-

linking could be described by a change in the viscoelastic

response, expressed by a dependence of the activation volume

on strain and cross-link density.

A Matlab package ‘Leonov’ for the implementation of the

modified Leonov model as suggested in this study is available

free of charge via the Internet at http://www.mathworks.com/

matlabcentral/fileexchange/.
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